ChatGPT for Data Visualization

ChatGPT can teach you the basics of data visualization

Benjamin Obi Tayo Ph.D.
6 min readApr 18

--

Image by Author.

Authors: Benjamin O. Tayo and Gideon Takor

Benjamin O. Tayo LinkedIn Profile: https://www.linkedin.com/in/benjamin-o-tayo-ph-d-a2717511/

Gideon Takor LinkedIn Profile: https://www.linkedin.com/in/gideon-takor-mba-28835820/

ChatGPT can teach you the basics of data visualization. If you have an account on openai.com, you can use the queries presented below to learn the basics of data visualization.

1. Matplotlib

Input query: python matplotlib

Output from query: Matplotlib is a Python library used for creating visualizations and plots. It is a popular library for data visualization and is often used in conjunction with NumPy and Pandas libraries for data analysis.

Here’s a basic example of how to use Matplotlib to create a line plot:

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0, 10, 100)
y = np.sin(x)

plt.plot(x, y)
plt.xlabel('x')
plt.ylabel('y')
plt.title('Sine Wave')
plt.show()

In this example, we import the Matplotlib library and NumPy library. We then create an array x that ranges from 0 to 10 with 100 points, and an array y that contains the sine of each element in x. We then use the plt.plot() function to create a line plot of x and y. Finally, we add labels to the x and y axes, a title to the plot, and display the plot using the plt.show() function.

2. Scatterplot

Input query: python scatterplot

Output from query: To create a scatter plot in Python using Matplotlib, you can use the scatter() function.

Here's an example of how to create a scatter plot using randomly generated data:

import matplotlib.pyplot as plt
import numpy as np

x = np.random.rand(50)
y = np.random.rand(50)

plt.scatter(x, y)
plt.xlabel('X Axis')…

--

--

Benjamin Obi Tayo Ph.D.

Dr. Tayo is a data science educator, tutor, coach, mentor, and consultant. Contact me for more information about our services and pricing: benjaminobi@gmail.com